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C A L C U L A T I O N  OF P R E S S U R E  D I S T R I B U T I O N  

N E A R  THE L E A D I N G  E D G E  OF A N  AIRFOIL 

U S I N G  T H E  D I S C R E T E - V O R T E X  M E T H O D  

D. N. Gore lov  UDC 518.12:533.6 

Solution of problems of a flow past an airfoil using the discrete-vortex method  determines the total 
intensities of a vortex layer for a finite number  of elements. To calculate the pressure distribution over the 
airfoil and the total hydrodynamic  reactions, one should construct an approximating function for the intensity 
of the vortex layer on the basis of assigned values of discrete vortices. A step function is usually chosen. Such 
an approximation gives good results for inner points of the contour, but is practically unacceptable near the 
leading edge, in particular, for thin profiles. 

In the present work an approximating function for the intensity of a vortex layer near the leading 
edge of an airfoil is constructed taking into account the edge shape using the values for two discrete vortices. 
Formulas for the pressure distribution and total hydrodynamic reactions are presented. It is shown that in 
the limiting case of an infinitely thin profile the approximation permits exact determination of the suction 
force. 

1. Let us consider the problem of a stationary flow of an ideal incompressible liquid past an airfoil in 
Cartesian coordinates Oxy.  Let the contours Lx and L2 be the upper and lower sides of the airfoil. We model 
these contours by vortex layers of intensities ~'1 (~rl) and "1'2 (cr2) (Crl and a2 are the arc coordinates of the 
points at L1 and L2). Following the method of discrete vortices, we divide the contours L1 and L2 into N 

elements [~)-1, ~'~)] E L r  (r = l, 2, m = 1 , . . .  ,N) ,  where ~ ) 1  and ~'~) are the complex coordinates of the 

ends of the ruth element. The total intensity of the vortex layer at [~}~)-l, ~(~)] determines the intensity of the 

discrete vortex F(~ ) placed at point z~ ) of this element. Let the elements with number  m = 1 be adjacent to 
the leading edge; the elements with number m = N, to the trailing edge. 

Assume that  F~ ) are known. We construct the approximating functions for 7r (a~) at the elements 

[r r through the assigned values of r~ r) (r = 1,2) with allowance for the profile geometry and the 
character of variation of fluid velocity along it. 

First of all we derive a rather general equation for the profile contour in a small vicinity of the leading 
edge. We introduce a system of coordinates O(rl with the origin at the leading edge orienting the ~ axis along 
the tangent to the median L0 of the contour (see Fig. 1). Let ~1,  q~l be the coordinates of the end of the 
first element at Lr, r = 1,2. We shall assign the contour Lr at the points of this element by the equation 

r/~ = ( - 1 ) r - l a r V a ,  ar = 1,7~1[/~l, ~ ~ [0, ~rl], r = 1,2. (1.1) 

Each curve (1.1) passes through two given points (0,0), (~1, rlrl) of the contour Lr and satisfies the 
condition according to which the derivative 

r l ' r=( -1 ) r - lar / (2V /~)  (1.2) 
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becomes infinite at q~l -fi 0 at the leading edge. Test calculations have demonstra ted the high accuracy of Eq. 
(1.1) at N >2> 1 for all Zhukovskii airfoils (from a plate to a circle). 

Now let us turn to the construction of an approximating function for the intensity of the vortex layer 
7~ (a~), which differs from the tangential velocity component only in the sign. We note that  for round-leading- 
edge airfoils the fluid velocity along the edge changes rather smoothly, and for thin profiles a growth in the 
velocity gradient is observed as the leading edge is approached. In the limiting case of an infinitely thin profile, 
the velocity near the leading edge varies as 1 /v~ .  Taking into account this character of velocity variation we 

approximate % (c%) in the vicinity or" the leading edge (at the elements [~'~), ~ ) ] )  by the function 

A~ 
7 ~ ( c ~ r ) = B r +  {C  [O,~l],  r = l , 2 ,  

~ / I  + (,,)2' (1..~) 

A ~ -  4 ~v,~l [ ~ t l ) + ~ 1 2 ) ] '  B~=2(-l)r-1[~111 ) ~12).l" 
Here A~ ~) is the length of the element [~'~'), ~'f~ll~ a,  and 8,  are constants defined in terms of discrete vortice~ 
r~ II and C~ ~), which are placed at the first elements of the contours L, and L2 (see Fig. ~). 

Expressions (~.i) and (1.2) make it possible to write (1.3) as 

2A~ x / - ~  ~ (~r) = B~ + (1.4) 

It is evident from (1.4) that  for sufficiently thick profiles (]T/rll/~rl ~ 1) both terms exert the same 
influence on the velocity distribution, whereas for thin profiles ( I , r l l /~ l  << 1) the second term is principal. 
In the limiting case of [rlrl I = 0, when the airfoil coincides with the airfoil section L0, 

~ ( ~ )  : a ~ / v ~  + . . . ,  ~ ~ [0,~,11, ~ = 1 ,2 .  

In this case, Lo is simulated by two vortex layers whose intensities 71 and 3'2 are determined (with 
one-place accuracy) by the limiting values of the tangential velocity components.  In simulating Lo by one 
vortex layer, as is customary in thin-wing theory [1], the intensity of the vortex layer is -~ = "~1 + y2 and in a 
small vicinity of the leading edge 

~, (~) = A/V/'~, A = a l  + A2. (1.5) 

This completes the construction of the approximating function for % (err) near the leading edge of an 
airfoil. 
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A numerical experiment has shown that  for the elements of vortex layers at L1 and L2 beyond the 
leading edge one can apply a piecewise constant intensity distribution % (a~). In this case 

~,r ( O ' r ) =  F(r~r)/A(m r) ,  ~k(m r) = 1 r  r y --- 1,2, r a =  2 , . . . , N .  (1.6) 

2. Let us turn to the derivation of formulas for the hydrodynamic pressure p and the total hydrodynamic 
forces R~ and Rv acting on the profile contour L = L1 + L2. 

In a stationary incompressible flow hydrodynamic pressure is related to the velocity vector v by 
Bernoulli's integral 

1 
p - w = - ~ p ( v  ~ - vL)  

(p is the liquid density, v = [vl). 
At the points of the profile contour 

1 2 = v2) ,  = br l ,  p - p ~  -{p(.~ - (x, y) E LT, r = 1,2. (2.1) 

Here 7r (~r~) is determined from the assigned values for discrete vortices using approximation functions (1.3) 
and (1.6). 

The total hydrodynamic forces are calculated by the formula 

R~ - i Ry  = i [ (p - p ~  ) e - i e  do , (2.2) 
L 

where O is the slope angle of the tangent to the contour L, which is reckoned from the axis z counterclockwise, 
while integration over the contour L is performed clockwise. Let us present (2.2) in the form 

2 N 
n= - in~ = E E (AR<& -~/'R~21 (2.3) 

r = l  m = l  

-,zm, -~ym are the hydrodynamic forces acting on the ruth element of the contour Lr). From (1 6) and 
(2.1)-(2.3) it follows that  for the contour elements beyond the leading edge (m = 2 , . . . ,  N) 

A R ~  - iAR(;2 = - ~ p ~ )  - ~ (2.4) 

(0(~) is the angle 0 at the point ;(~) or at a control point at the appropriate element). 
At the elements with number  m = 1, which are adjacent to the leading edge, the intensity of the vortex 

layer is given by approximating function (1.3), and the profile contour, by (1.1). Therefore, at m = 1 

--  Zt.-X/'Lrt 1 ) e  , ~'~ ~ '~z' I 

I Ar ]2 ~ ' - ~ ' =  ~ { / ~ + ~j~(~,~)~ 

Calculating the integrals we obtain 

~1, = ~-~ [-,~,(~- ~ : ) - ~ ~  

(2.5) 

2 1 ]  
ln~/1+~2-1~/1+/32+1 2Ararctan~rr ; (2.6) 

;- ( ] , } AR~rl)= - p(--1) r 4k/{rlArBr +/32--/3r  + A 2 1 n T - l - ( B r 2 - V ~ ) ~ r l  

[Zr = I~T11/(24r,)1. 

(2.7) 
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The moment of hydrodynamic forces with respect to the axis passing through a point is calculated 

from the distributed forces A ~'(r) and AP(~) In particular, the moment with respect to the coordinate origin 
is 

2 N 
M = ~ ~ ( A R ( r ) z  (~) - A R  (r), (~)~ k y m  m x r n ~ m  /" 

r = l  m = l  

Here z~  ) and y~) are the coordinates of the discrete vortex r(m r) (under the assumption that the forces AR([~ 
AO(~) C(~)). and ~.~y,,, are applied to 

Formulas (2.3)-(2.7) are applicable for calculating the hydrodynamic forces acting on profiles of any 
thickness. Let us show that in the limiting case of an infinitely thin profile the results obtained are in complete 
correspondence with the thin-wing theory [1]. 

Assume Iris1 [ ~ 0. Then the contour L is transformed into an airfoil section L0, and the angle 0~ ) = 

0~ ) + 7r; in this case L0 is simulated by two vortex layers 3'1 and ")'2. In the thin-wing theory, as mentioned 
before, L0 is simulated by one vortex layer 3  ̀= 3̀ 1 + 72- Let Am be the lengths of the elements of this layer, 

while A(m 1) = A~  ) = Am (m = 1 , . . . ,  N). It follows from (2.4) that each element of L0 experiences a force 

ARm = lpAm[(F~) /Am)2 - (F~)/Am)2], m = 2 , . . . , N ,  (2.8) 

directed to the normal of the element. Let us denote 

vo = (v+~ + v-;)12, 3 ` = , , ; - , , + ,  

where v + and v~- are the limiting values of the tangential fluid velocity component as L0 is approached from 
above and below. Within the framework of approximation (1.6) at the ruth element 

+ -r~)/zxm, v~- F~)/Am, v0 (r~) r~))/(2Am), 3' = ( r '~)+r~)) /Am. (2.9) 

Taking into account (2.9), formula (2.8) takes the form of the Zhukovskii theorem "in the small" 

A R m ~ A m  = --pv03`, m = 2 , . . . ,  N. 

Let us consider the hydrodynamic forces acting on the first element of the airfoil section L0. Following 
the thin-wing theory, this element is affected by two forces. One force is directed normally and is determined 
by the Zhukovskii theorem "in the small," and the other, which is called the suction force, is applied to the 
leading edge and is tangent to L0. With variation of the intensity of the vortex layer in the vicinity of the 
leading edge L0 according to the law (1.5) the suction force is 

62 = -TrpA2/4. (2.10) 

Let us determine the form taken by formulas (2.6) and (2.7) in the limiting case of an infinitely thin 

profile. W'e note that the forces A R ~  ) (r = 1,2) are tangent to L0 at the leading edge, A p ( r )  while is directed "~* ~0 1 ' 
to the normal. At [r/rll + 0 the coefficient fir -~ 0 and (2.6) takes the form 

= - T r p A ; / 2 ,  r =  1,2. 

The total force acting on the first element of the airfoil section L0 in the direction of the tangent is 
71" 

Z2XR~I = m / ~ i )  q- AR~21 ) _ 5p(A~ + A 2 ) .  

Expressing A1, A2 with the help of (1.3) in terms of the intensities of the discrete vortices F~ 1) and 

F~ 2), we obtain 

7r (F~ x) + F~2)) 2 (2.11) 
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Hence 

Formula (2.11) is in complete agreement with (2.10). Actually, by definition 

A 1 

0 

a = + 

which results in the coincidence of (2.10) and (2.11). Similarly, using (2.7) to estimate the normal force 

/XR,71 = AR~ll ) + AR~] ) acting on the first element L0, we arrive at (2.8). 
Thus, in the limiting case of an infinitely thin profile, formulas (2.4)-(2.7) derived on the basis of 

approximating functions (1.1)-(1.3) are in complete agreement with the results of the thin-wing theory. 
The algorithm developed was tested in the problem of motion of an airfoil near a screen [2]. 
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